
We Know the Object

Components
in

Financial Systems

Hubert Matthews
Mark Collins-Cope

Ratio Group Ltd.
17/19 The Broadway

Ealing W5 3NH

Email: info@ratio.co.uk
Web: www.ratio.co.uk

Components in Financial Systems Page 2 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Table of Contents

1. Introduction ..3
2. Components in a settlement system...4

2.1. Domain specific components...4

2.2. Business layer components ...5
2.2.1. Account ...6
2.2.2. Instruction ...6
2.2.3. Instrument ...6
2.2.4. Loan..6
2.2.5. Profile ...7
2.2.6. Settleable...7

2.3. Activity (or use case) layer components...7
2.3.1. Collateral Top-Up and Returner..8
2.3.2. Credit Line Adjuster...8
2.3.3. Financer ..8
2.3.4. Loan Reimburser ...8
2.3.5. Netting Algorithm..9
2.3.6. Netting Engine...9
2.3.7. Netting Extractor ...9
2.3.8. Sequencer ..9
2.3.9. Settlement Post Processor...9

2.4. Example of component interaction ..9
3. Architecture and reuse...11

3.1. Architectural layering ...11
3.1.1. Motivation for architectural layering...12
3.1.2. Architectural layering works! ...14
3.1.3. Layering and Deployment ..14

3.2. Granularity and interfaces ...14
3.2.1. Changes to interfaces ...15

3.3. Reuse issues ...15
3.3.1. Extending components externally ...15
3.3.2. Reuse of business components..18
3.3.3. Reuse of the persistence layer...18
3.3.4. Reuse of other business classes...18

4. Process and team organisation ...19
4.1. Design process..19
4.2. Practical aspects of development process...21
4.3. Team organisation ..22

5. Component implementation issues ...23
5.1. Detailed anatomy of a component..23

5.1.1. Logical View ...23
5.1.2. Physical View..24
5.1.3. Release View...24

6. Summary..25
7. References ..26

Components in Financial Systems Page 3 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

1. Introduction

This paper is one of a family of four papers (see References) describing different aspects of
the design and implementation of a financial settlement system. The system was developed to
replace an existing legacy system. Designed to be both flexible and high performance, the
system was developed over a period of 3 years using a component-based approach and object-
oriented techniques. The system comprised over 1,000,000 lines of C++ source code (of
which 75% was machine generated), divided into 1,500 classes spread over 30 component
subsystems.

In this paper, examples of components from the settlement domain are discussed with
reference to wider architectural issues such as layering, interfaces and dependency
management. The process by which a component-based system may be designed and the
implications for team working are also discussed, as are issues of designing components for
reuse.

The audience for this paper is intended to be designers and analysts in all fields, particularly
those involved in component based design or development. The first part of the paper
assumes some knowledge of financial systems, particularly the settlement domain, whereas
the remainder of the document is more general in nature. UML object models and sequence
diagrams are used to illustrate the packaging and decomposition of the design.

For the purposes of this paper, we offer the following definition of a component:

A component is a collection of collaborating classes exporting a well-defined interface
that is distributed in binary form.

This definition is adequate to describe most possible examples of components ranging from a
single object file through DLLs to COM objects and Enterprise Java Beans. In this paper we
shall be examining components developed in a Unix environment that have been implemented
in C++ as shared libraries, although the discussion applies equally well to other types of
component.

Components in Financial Systems Page 4 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

2. Components in a settlement system

In this section of this paper we discuss the structure, functionality and inter-relationships
between components as used in the settlement system under discussion.

The settlement process involves the receipt of matched and validated instructions from clients
and making changes to their respective accounts. This may involve the use of credit lines or
the creation of loans, for which collateral is required. A process called netting is used to
produce a subset of transactions that can be settled together within the constraints of the
settlement house and its clients.

2.1. Domain specific components

Figure 1 details the overall structure and inter-relationships between the domain specific
components in the system. The components shown are separated into two major layers: the
activity (or use case) component layer, which is concerned with issues of overall application
control, and the business component layer, concerned with the provision of re-usable business
components that encapsulate domain specific objects. Dependencies between components are
indicated using arrows.

Examining the dependencies between components in this diagram, we can see that:

• all inter-layer dependencies (those between a component in one layer and a component
in another) are in a downwards direction - going from the less stable application specific
components in the activity layer to the more stable, more general business components.
This helps ensure that the elements of the system most likely to change - the activity or
use case components - are not depended upon, helping minimise the likelihood of
change propagation throughout the system.

• when considered as a whole, the dependencies between components are acyclic - there
is no direct or indirect route by which a component is dependent upon itself. This
maximises the independence of the components and ensures that bottom up integration
and testing of the system is at least feasible (components between which there is a
dependency cycle effectively form one large component, as every component ends up
dependent on every other).

• the instrument and the account components are heavily used. This is to be expected,
given the nature of the settlement domain, and the rich functionality that these two
components encapsulate.

Components in Financial Systems Page 5 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Collateral Top
Up And Return

Credit Line
Adjuster

Loan
Reimburser

Netting
Algorithm

Netting Engine

Netting
Extractor

Sequencer

Settlement Post
Processor

Financer

Account

Instruction Instrument

Loan

Profile

Settleable

Activity components

Business components

Figure 1 - Domain specific components of the system

2.2. Business layer components

The business layer components of the system encapsulate domain visible objects and their
associated business logic. They are heavily used by the components in the higher activity (or
use case) layer, and are typically based on well understood entities within the business area.
They are independent of the specifics of the application itself, and are reused across different
functional areas - for example netting and settlement post processing.

The major business components of the settlement system are as follows:

• Account
• Instruction
• Instrument
• Loan
• Profile
• Settleable

Components in Financial Systems Page 6 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

These are discussed in more detail below.

2.2.1. Account

An Account represents customers and depositories within the system. It records the effects of
business actions such as buying, selling, borrowing, lending and pledging. Its key
responsibilities include: position management; booking; risk limits; collateral and
management of account characteristics.

The Account component provides two interfaces to its users: IntAccountFactory and
IntAccount. The former interface is used to create and retrieve accounts that are then
manipulated by the latter.

2.2.2. Instruction

The Instruction component models the instructions that customers give to the settlement
house regarding what they have bought and sold in any given transaction. It represents one
party’s view of a transaction. Instructions track their own lifecycle as they pass through the
different stages of the settlement process, and also handle issues of validation and matching.

2.2.3. Instrument

The Instrument component models real world financial instruments such as cash and
securities. It is also responsible for the quantity and type of that instrument and its instrument
group. Both fungible (anonymous/interchangeable) and non-fungible (specifically
identifiable/non-interchangeable) instruments can be handled.

Key instrument functionality includes: arithmetic and comparison; valuation; and valuation
for use as collateral - including calculation of haircut and uplift.

2.2.4. Loan

The Loan component models the lending of cash and securities. It also handles the principal,
credit and collateral for a loan in the form of an instrument quantity and movements that are
generated by the setting up of the loan.

There are three interfaces to the Loan component: IntLoanFactory for loan creation, IntLoan
for standard manipulation, and IntLoanAction - a sub-interface used for implementing the
details of a loan.

The component implements all of the 17 different types of loans currently used within the
business area for which the system was developed.

Components in Financial Systems Page 7 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

2.2.5. Profile

The Profile component contains global reference data that is used by other components. Its
primary use is to hold configurable parameters that are required for example when financing,
such as details of the risk taker, the asset taker, the asset provider and associated loan types.

2.2.6. Settleable

The Settleable component implements the core functionality of settlement, providing classes
such as movements, transactions and transaction groups to do this. Its functionality includes
controlling the processing logic of settlement, i.e. whether provision checking, cash financing
etc are performed.

There are four interfaces to this component:

• IntSettleableFactory
• IntPendingAmountHolder
• IntTransaction
• IntMovement (the primary interface).

The factory interface is for creation and retrieval of settleables. The pending amount interface
deals with the pending arrival of securities or cash, and the transaction interface handles the
grouping of movements and instructions into transactions. The movement interface provides
the major functionality of the settlement engine, in particular methods to attempt to settle
movements, sequence the order of movements, and status functions to determine why an
attempted settlement failed.

2.3. Activity (or use case) layer components

Activity components encapsulate the algorithms, rules and procedures that manipulate the
business components discussed in the previous section. In this section, we shall examine the
major components in this layer, namely:

• Collateral Top-Up and Returner
• Credit Line Adjuster
• Financer
• Loan Reimburser
• Netting Engine
• Netting Algorithm
• Netting Extractor
• Sequencer

Components in Financial Systems Page 8 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

• Settlement Post Processor

Unlike the business components, activity components do not contain persistent objects. Most
capture one significant piece of functionality as seen from a user’s perspective – and can
therefore be thought of as implementing a use case.

2.3.1. Collateral Top-Up and Returner

This component re-evaluates the collateral pledged towards loans and performs either a top-
up or a return of collateral as necessary.

2.3.2. Credit Line Adjuster

The Credit Line Adjuster adjusts customer's credit lines following updates made during the
settlement process. This involves the following steps:

• checking for changes in a customer’s credit lines by querying the Account component
• if the credit line has been over-utilised then loans are moved from one financing type to

another
• if the credit line is not fully utilised then additional loans are moved to the cheapest

financing type

These steps occur only after loan reimbursement.

2.3.3. Financer

The Financer deals with the creation of cash loans. Although the component interface
supports the creation of Securities loans, this functionality is not currently implemented
within this component.

2.3.4. Loan Reimburser

Loan reimbursement (as implemented by this component) happens after settlement, and
involves trying to reimburse as many loans as possible. This involves the following steps:

• checking the available liquidity on the asset taker’s account
• closing loans of a specified type which are ordered by various business rules including

age
• returning collateral to the asset taker
• reducing the asset taker’s credit line utilisation

Each of these steps is undertaken by the Loan component with the Loan Reimburser
sequencing the steps and logging any exceptions.

Components in Financial Systems Page 9 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

2.3.5. Netting Algorithm

The Netting Algorithm component takes movements extracted by the Netting Extractor and
groups them for settlement.

2.3.6. Netting Engine

The Netting Engine maintains overall control of the netting process. It performs common
pre- or post-processing before invoking the Netting Algorithm component.

2.3.7. Netting Extractor

The Netting Extractor marks movements as “extracted” so that they are not updated during
the netting process.

2.3.8. Sequencer

The Sequencer orders movements according to both the customer’s and the settlement house’s
sequencing options.

2.3.9. Settlement Post Processor

After settlement the post processor attempts to reimburse loans and adjust credit lines for all
of the customer accounts. It will:

• reimburse outstanding cash loans on “free held” positions
• adjust credit lines on “free unconfirmed” cash positions with outstanding loans

It uses the Loan Reimburser and the Credit Line Adjuster components to do this.

2.4. Example of component interaction

Having examined a number of components in isolation, we will now look at how these
components interact to implement a given requirement. We will look at the collateral top up
and return component which re-evaluates the collateral pledged towards loans and performs
either a top-up or a return of collateral as necessary.

A simplified object model of the relevant parts of the system is shown below:

Components in Financial Systems Page 10 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Collateral
TopUpAnd

Returner
IntLoan IntInstrument

*

Figure 2 - Component level object model

This shows that we are examining a number of loans, each of which has an associated
instrument that has been pledged as collateral for that loan. Note that at this level of
abstraction we are interacting with components’ interfaces so the object model shows
interfaces rather than components. (The “Int” prefix is a naming convention used by the
settlement application to denote a interface.)

The high-level sequence diagram for this operation is:

topUpAndReturn getAllLoansWithColType

topUpAndReturn

 If total collateral < ETC then top up

getValueInBaseWithUplift

 if total collateral > ETC then reimburse
getValueInBaseWithHaircut

:IntCollateralTopUpAndReturner :IntLoanFactory :IntLoan :IntInstrument

Top level message topUpAndReturn getAllLoansWithColType

 Do top up and return topUpAndReturn getValueInBaseWithUplift

getValueInBaseWithHaircut

topUpAndReturn

For each loan

getAllLoansWithColTypegetAllLoansWithColType

topUpAndReturn getValueInBaseWithUplift

getValueInBaseWithHaircut

topUpAndReturn getValueInBaseWithUpliftgetValueInBaseWithUplift

getValueInBaseWithHaircutgetValueInBaseWithHaircut

Figure 3 - High-level sequence diagram of component interaction

Here we use the factory interface IntLoanFactory to retrieve the relevant loans, which we then
process in turn by calling their topUpAndReturn method. The instrument’s collateral
valuation methods are then used to determine if the level of collateral needs to be changed
either upwards or downwards.

The major point of interest from this diagram is that all component interactions occur through
the published interfaces, which guarantees that the encapsulation of the components is
preserved and that any interactions are visible at the architectural level. This will be
discussed further in the second section of the paper.

Components in Financial Systems Page 11 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

3. Architecture and reuse

3.1. Architectural layering

Architectural layering is an important concept in the design of software systems, one that
leads to a flexible, re-usable and stable software structure. It is a metaphor which divides the
structure of an application, or more precisely the component packages (packages that are
intended to be components) from which it is made, into an ordering based firstly on the
degree of application/domain specificity of the classes contained within the packages, and
secondly on the dependencies between these packages. Figure 4 shows an example of
layering showing how the reusability of a component varies according to how specific its area
of application is.

User
Event

Use Case
#1

Use Case
#2

Business
Component

Persistence Comms

Operating
System

application
specific

(vertical)

general and
reusable

(horizontal)

range of applicability

Figure 4 - Vertical v. horizontal components

The ordering is generally shown on a package diagram by drawing the higher order (or higher
layer) packages - those which contain classes that are inherently application or vertical

Components in Financial Systems Page 12 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

domain specific - towards the top of the package diagram, and the lower order (or lower layer)
packages - those which contain classes that have fewer or no domain dependencies - towards
the bottom of the diagram.

3.1.1. Motivation for architectural layering

What is the point of architectural layering? Key motivations are:

• To minimise the mixing of levels of details. Descending into detail (e.g. individual data
formats and structures) when the overall structure of the system is unnecessary.

• To assist in managing the dependencies between the intended components that will
make up a system. Cross-layer dependencies should be in a downward direction, from
one layer to the layer immediately below it. This ensures that the propagation of change
within the system is minimised, as dependencies will point from the more unstable
specific layer (where requirements changes are more likely to occur) to the more stable
general one.

• To assist in separation of concerns. Layers such as the highest, which contain GUI
dependent classes, and the lowest, which contains database dependent classes, are
inherently technology specific. The business object layer in particular should not
contain technology dependencies. Such a separation of concerns will assist in both
focusing the mind of the designer (divide and conquer), and in managing technology
changes (e.g. from Windows to Motif) should these be required. This implies that the
interfaces between these layers should themselves be technology independent.

The 'layering' metaphor comes from the practise of dividing package diagrams into horizontal
bands, going from the top to the bottom of the diagram, each of which isolates various
concerns of the software architecture, such as the user interface, data storage, communication,
interfacing to hardware, persistence, etc. Layers are often referred to as being vertically
specific (as in a vertical market) or horizontally specific (as in a horizontal market). This
depends on whether they are tied to a particular problem domain or not, although it should be
noted that there may be a sub-layering (most easily derived from package dependencies)
within both the vertical and horizontal areas of a software architecture. Good component-
based design relies heavily on these concepts.

An overview of the architectural layering of the settlement system is shown in figure 5.
It illustrates four layers and conforms to the conventions discussed above:

• The upper layer contains objects which are highly specific to the application in
question, and which are generally not reusable (unless you are building another version
of the same application!). This layer is generally made up of classes that either manage

Components in Financial Systems Page 13 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

user or external system interfaces (boundary classes1), or use case or control classes
(controller classes). These control the functions or use cases provided by the
application by manipulating the business objects in the layer below. In the settlement
application this is referred to as the activity layer.

Settlement
Post Processor

Financer Sequencer

persistence

activity

business
component Profile

RDBMS

Account

technical
infrastructure

system
software

Figure 5 - Layering of settlement system

• The layer below is the business component layer, in which components provide façades
to groups of co-operating business objects (entity classes) which they contain. Business
components encapsulate objects that contain domain specific data, and operations on
this data that follow the appropriate business logic or rules. The façade provided by a
component may have one or more interfaces. Since different applications in the same

1 Jacobsen introduced the concept of boundary, controller and entity classes in his book
“Object Oriented Software Engineering” (see [Jacobsen]). Boundary classes deal with the
interface of the system to other systems or to humans (such as a graphical user interface).
Controller classes contain algorithmic code that controls the interaction of the parts of the
system, and entity classes are the business objects that represent entities in the problem
domain.1

Components in Financial Systems Page 14 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

problem area may deal with the same sorts of problem domain objects this layer is more
reusable and less specific than the upper layer.

• The persistence layer is the lowest layer that was written by the developers of the
system under discussion. It deals with issues connected with the loading and retrieval
of objects to and from a relational database. Further details of the persistence
mechanism used in this project are contained in the paper “Persistence: Implementing
Objects over a Relational Database”.

• The final layer is a commercial RDBMS. This is generally applicable across a wide
range of applications.

3.1.2. Architectural layering works!

Architectural layering provides a solid basis upon which a component based design may be
undertaken. In the settlement system development under discussion, the layering with
downward acyclic dependencies ensured that the system has remained stable in the face of
considerable changes in requirements.

3.1.3. Layering and Deployment

Layering can provide flexibility for how the components of the system are deployed to
physical platforms, for instance in a traditional 3 layer client-server system, the use case
components might be deployed to the client machine, the business components to the middle
tier and the RDBMS on its own dedicated tier. However, in this case the entire application
was deployed to a single, enterprise class server.

3.2. Granularity and interfaces

Having seen how components and layering can help us we must next address the issue of
designing such a system. A typical approach is to use object-oriented analysis and design
(OOA/D). A good starting point is the use cases for the required system. They describe the
scope and required functionality and may be cross-referenced against a high-level
specification object model of how components and their façade objects relate. Another paper
("The RIS Approach to Use Cases " – see [RIS]) discusses the factoring out of the top level of
component 'services' from 'business process' use cases in more detail. We shall discuss more
details of the design process below, but for the moment we will assume that we have a list of
services to be implemented.

Given a list of services to implement we are faced with two questions:

• how do we group these services into cohesive interfaces, and
• how do we decide which components implement which interfaces?

Components in Financial Systems Page 15 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Answering these questions is probably the key architectural step in the design of a component
system, since this is the foundation of all the subsequent design and implementation effort.
It is vitally important to concentrate the right resources on getting component interfaces right
early on, and not be tempted to rush into the implementation of individual components.
Experience from this project was that investment at this point is rewarded handsomely in the
subsequent design and development phases.

3.2.1. Changes to interfaces

In a large system, we wish to avoid changing the components’ interfaces as this may mean
having to modify a large amount of code. The component-based approach helps prevent
changes from propagating across the system as internal modifications are invisible because of
the high degree of encapsulation. However, if a component’s interface changes then
potentially all clients of that component (or that particular interface if it offers multiple
interfaces) are subject to change. Therefore we must try to avoid changing interfaces if
possible, and if it is not possible then we must consider the knock-on effects on a system-wide
basis.

The approach taken in the settlement system was that the system architects had to approve all
changes to a component’s interface. This enabled them to balance the need for the change (to
add extra functionality, for example) against the need to maintain stable interfaces. Taking an
example for the system in question a change to either the Account or Instrument components’
interfaces would cause 10 other components to have to be changed too (or at least rebuilt), so
such a change would have to be absolutely necessary to be approved. The change request
procedure ensures that the architects are fully aware of such changes.

3.3. Reuse issues

One of the commonly vaunted advantages of object-oriented technology is the possibility of
reusing code. Because of inter-class coupling it is often not possible to reuse individual
classes. Components, however, encapsulate a number of classes that collaborate to achieve
their intended aspect of functionality, and are therefore more much more likely to be reusable.

3.3.1. Extending components externally

A typical scenario for the life of a vertical component might be as follows. First of all, the
component is written and used in one particular context, usually the project as part of which it
is developed. The next stage is when the component is first reused. A certain amount of
work has to be expended in order to make the component fit into this new context, but it will
become more general purpose re-usable. A final stage is when the component is adapted to
allow it to be extended without access to its source code (when it conforms to the open closed
principle), typically by getting the component to call out to extension classes that are
subclassed from a base provided by the package. This will generally occur at a later stage
than the first re-use, as only at this time have the designers had sufficient exposure to different

Components in Financial Systems Page 16 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

contexts to make it truly general. After this final stage is reached then the component can be
used and extended to work in almost any environment where its core functionality is useful.

In the project under discussion, the vertical components are at the second stage, the number of
functional changes so far requested constituting an effective first re-use. They can currently
be configured using database tables to vary the functionality within certain limits.
Considerable effort has gone into defining internal extension points. At some point, when the
demand for re-use of a particular component is apparent, the internal extension points will be
externalised.

To illustrate this lifecycle, diagrams showing the three stages of a component’s life are shown
below:

Comp

Stage 1: monolithic internals

Comp

Stage 2: internally extensible

X1 X2

AbsX

Comp

Stage 3: externally extensible

X1 X2

AbsX ExtX

Figure 6 - Stages in component reuse

In stage 1 the internals of the component are often monolithic with little effort having been
put into making the component flexible or extensible in any way. When requirement changes
force the component to be updated what typically happens is that the internals of the
component are modified to implement the new functionality by factoring out common
behaviour into superclasses and by the use of internal polymorphism. One particularly
common method is the use of strategy objects that act as plug-in algorithms for variations in
behaviour. This is shown as stage 2 in figure 10, where AbsX is an abstract base class that
defines the interface for strategy objects X1 and X2.

Components in Financial Systems Page 17 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Once the component has reached this stage, it is simple to allow for external strategy objects
such as ExtX shown as stage 3 in the diagram. We have now reached a stage where we can
vary the behaviour of the component without having to modify its source code in any way.
Hence we can distribute the component in binary form, which has advantages in terms of
reduced build times, security of intellectual property (users don’t have access to the source
code), simplicity of distribution, etc. Stage 3 was not a require of the Settlement project and
as such no such implementation has occurred.

We have also gained in that the component is now more general, because we have removed
the application specific part of the behaviour, and more flexible by allowing users to provide
their own versions of the extracted behaviour. In architectural terms, we may be able to move
the component down a layer whilst keeping the application specific behaviour at the correct
layer, as shown in figure 11.

Comp

IntX

AbsX

Comp AbsX

ExtX

internal extension

external extension

layer n+1

layer n

Figure 7 - Internal v. external strategy objects

Here the architectural layer boundary is shown with a dotted line. On the left we see that
because the extension behaviour (which is application specific) is within the component then
the component as a whole becomes application specific and therefore less reusable. On the
right, however, the application specific part has been separated from the common core
functionality of the component, so the common part (which is now application neutral and so
more reusable) can be moved down a layer and the application specific part remains at the
same layer.

As a concrete example of this process applied to the settlement application, consider risk limit
checking for an account. The Account component currently contains within itself an abstract
interface from which all risk limit checkers are derived. This is an example of the use of the

Components in Financial Systems Page 18 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Strategy pattern (see [GoF] for further details). Which checker should be used for a particular
account is then chosen by the use of configuration data. It would be very easy to export this
abstract risk checker interface and have an external class derive from it. All that would then
be needed would be a way of connecting this external checker object to the Account
component and we would have a fully extensible component, like this:

Account

Infinite
Risk

Risk
Checker

Straight
Risk

...

Manual
Risk

external risk checker

Figure 8 - Settlement example of external strategy object

A key lesson here is that on larger systems such as this one it is vitally important to
concentrate on getting component interfaces right early on!

3.3.2. Reuse of business components

The settlement system has undergone extensive change during its development because of
requirement changes. Although the business components have not been reused in other
applications one could argue that these components have been reused within the application
itself. This is a testament to the effectiveness of component-based development.

3.3.3. Reuse of the persistence layer

In contrast to the vertical components, the strict architectural layering of the system has
ensured that the persistence layer contains no application specific code. This means that it is
a generally applicable, horizontal component that could be reused in other non-settlement
applications. Indeed there are currently plans to reuse it in a number of other fields.

3.3.4. Reuse of other business classes

A number of other classes were reused in the settlement application. These were mostly
general non-business specific classes such as date and time classes, strings and collections.
One very useful business class that was reused though is the TiCash class. This class handles
all of the multi-currency aspects of cash, handling arithmetic, conversion, rounding and all of
the legal procedures for Euro conversion, etc. More details of this class can be found in the
“Patterns in Financial Systems” paper.

Components in Financial Systems Page 19 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

4. Process and team organisation

4.1. Design process

In this section we briefly describe a design process for component-based development. It is
intended to be illustrative of the general approach rather than as a comprehensive and
prescriptive sequence of steps to be followed.

The process involves the following steps:

1) extract essential functionality from a written description of the requirements as service
use cases

2) decide to implement these services as either use case objects or as methods on
component interfaces

3) decide how to allocate these methods and interfaces to components
4) use inter-component level sequence diagrams to verify the decomposition and to

discover lower level methods
5) drill down using intra-component level sequence diagrams to decide how to implement

low-level methods and component internals whilst keeping the higher level design
under rigorous change control.

Step 1
The usual place to start a design is from the requirements specified by the customer of the
system. These are usually specified in English or some other natural language. From this
written description we can extract the required functionality of the system in the form of a list
of functions to be implemented, sometimes called “service” use cases. One particular process
for discovering these services is the RIS method described more fully in “The RIS Approach
to Use Cases” (see [RIS]).

Step 2
Given this set of services we can now decide how to implement them. Possible approaches
are to:

• implement the steps of a use case within the use case object itself;
• have a use case simply forward to a method on a component interface;
• call the component interface directly.

The first of these choices (a “fat” use case object) is appropriate if we require “do” and
“undo” facilities (as in Command pattern [GoF]), or if the use case’s functionality will not be
reused elsewhere. This is often true as use cases represent the most application specific
functionality within the system. Also, methods such as RIS factor out common functions as
services to be implemented in their own right. A forwarding use case object would be used if

Components in Financial Systems Page 20 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

the code must run in a multi-user environment where all user code must execute as part of a
transaction, whereas we would call the component interface directly only if lower level
components offer the correct functionality. The sequence diagram in figure 13 gives an
example of a “fat” use case object from the settlement domain called
CollateralTopUpandReturner that implements the “Collateral Top-up and Return” use case.

Now that we have made our first level of implementation decisions we have started to
populate the top layer of our reference architecture (defined in section 3.1) with either use
case objects or top-level components.

Step 3
The next step is to group our services into interfaces and to assign these interfaces to
components. Considerations of granularity, coupling, cohesion, and component level
polymorphism as discussed in section 3.2 now drive our design. At this point we will also
consider issues such as the need to modify an existing component to allow it to be extended
(as in section 3.3.1), whether we should buy a commercial component and adapt it, or build
our own. Typically these business components will be in the second highest layer of the
reference architecture.

Step 4
In step 4 we use an inter-component sequence diagram to verify that the interfaces and
components identified in step 3 can support the desired functionality. The diagram also
allows us to discover lower level methods that we must design. Figure 13 shows an example
of such a high-level sequence diagram taken from the settlement domain.

topUpAndReturn getAllLoansWithColType

topUpAndReturn

 If total collateral < ETC then top up

getValueInBaseWithUplift

 if total collateral > ETC then reimburse
getValueInBaseWithHaircut

:IntCollateralTopUpAndReturner :IntLoanFactory :IntLoan :IntInstrument

Top level message topUpAndReturn getAllLoansWithColType

 Do top up and return topUpAndReturn getValueInBaseWithUplift

getValueInBaseWithHaircut

topUpAndReturn

For each loan

getAllLoansWithColTypegetAllLoansWithColType

topUpAndReturn getValueInBaseWithUplift

getValueInBaseWithHaircut

topUpAndReturn getValueInBaseWithUpliftgetValueInBaseWithUplift

getValueInBaseWithHaircutgetValueInBaseWithHaircut

Figure 9 – Inter-component sequence diagram

Step 5
Having verified that our top-level decomposition is not missing any essential details we can
then drill down by drawing sequence diagrams for each method in the inter-component
diagrams. This leads us towards designing the internals of each component method. To
illustrate this, figure 14 shows the sequence diagram for the getValueInBaseWithHaircut
method and figure 15 shows a simplified specification object model for the Instrument
component of the settlement system.

Components in Financial Systems Page 21 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

Get value in base with haircut
getValueInBaseWithHaircut

Get value in base getValueInBase
Get base currency issue ID

getBaseCurrencyIssueID
Check for zero quantity

isZero
If non-zero, get nominal amount getNominalAmount
Get price

getPrice
Apply adjustment applyAdjustment
Get haircut

getHaircut
Convert to base

convert

:IntInstrument :CuQuantity:CuInstrument:CuHaircut TiCashConverter

Get value in base with haircut
getValueInBaseWithHaircutgetValueInBaseWithHaircut

Get value in base getValueInBasegetValueInBase
Get base currency issue ID

getBaseCurrencyIssueIDgetBaseCurrencyIssueID
Check for zero quantity

isZeroisZero
If non-zero, get nominal amount getNominalAmountgetNominalAmount
Get price

getPricegetPrice
Apply adjustment applyAdjustment

Figure 10 – Implementing IntInstrument::getValueInBaseWithHaircut

CollateralTopUpAndReturner

Int CollateralTopUpAndReturner

topUpAndReturn

Int CollateralTopUpAndReturner

topUpAndReturn

Loan

IntLoanFactory

getAllLoansWithColType

IntLoan

topUpAndReturn

IntLoanFactory

getAllLoansWithColType

IntLoan

topUpAndReturn

Instrument

Int Instrument

getValueInBaseWithUplift
getValueInBaseWithHaircut
getValueInBase
applyAdjustment

CuInstrument

getPrice

CuHaircut

getHaircut

CuQuantity

isZero

getNominalAmount

Int Instrument

getValueInBaseWithUplift
getValueInBaseWithHaircut
getValueInBase
applyAdjustment

CuInstrument

getPrice

CuHaircut

getHaircut

CuQuantity

isZero

getNominalAmount

*

*

Figure 11 - Specification object model for Instrument

4.2. Practical aspects of development process

The above description is just a general overview of one particular approach to designing using
components. In practice the process is more complex. For example, for the settlement
application the functional requirements were predominantly extracted using workflow
designs. Analyses of the variability and configurability of the design were also undertaken.

Components in Financial Systems Page 22 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

4.3. Team organisation

Ensuring that components are as independent as possible has significant advantages for team
working. Designing strongly encapsulated components that interact only at the architectural
level and only then in visible and planned ways has significant benefits when delivering a
project to tight timescales. Specifically it allows a number of relatively independent design
and development cells to be mobilised, which can work concurrently and also provides a very
obvious strategy for initial “assembly” level testing. This is a positive example of the
software management maxim: the structure of the software reflects the structure of the team
that built it and vice versa.

Another advantage of the component approach is that in languages such as C++ and Java the
compiler enforces the encapsulation that allows for independent teams. All access to the
component is via its interfaces, with no back doors being allowed. This adds significantly to
the intelligibility of the system as the components will be independent as far as is possible.
Any coupling they do have is clearly documented and is visible at the architectural level.
This contrasts with the traditional structured programming approach where encapsulation is a
matter of good practice and programmer discipline rather than being strictly policed by the
compiler.

Components in Financial Systems Page 23 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

5. Component implementation issues

Up to now we haven’t mentioned anything specific about how components are implemented.
We will now give details of the internal anatomy of a component and show how the logical
package structure that we have so far seen is mapped to source files (the physical view) and to
binary objects (the release view).

5.1. Detailed anatomy of a component

We must now confess to having simplified the internal structure of the instrument component
shown above. Certain implementation details were glossed over in the implementation model
to avoid muddying the picture. However it is now appropriate to examine these
implementation specific details.

5.1.1. Logical View

One of the weaknesses of C++ is that private implementation details are visible within the
header files. To avoid this leakage of implementation information, and therefore to avoid
unnecessary rebuilds because of changes to that private information, the settlement project
used a technique variously known as pimpl, Cheshire Cat, or handle/body (see [Meyers] for
further details). This involves inserting an intermediate object that acts as a façade object for
the component that merely passes all requests on to an internal object thus hiding all
implementation detail and exposing only a single simple object to users.

IntX IntXImpl

<<façade>> <<hidden>>

X

Figure 12 - Implementation of facade object

Having enriched our packages by adding in this façade object, we can now widen our view to
encompass three views of a component: the logical, physical and release views. The logical
view is the only one we have seen up to now, and gives the package structure. This is the
view we design with.

Components in Financial Systems Page 24 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

5.1.2. Physical View

The next view is the physical view: how we map our logical package structure onto physical
source files. For component X shown above we would typically have a source structure
something like this:

Header files Implementation files
X.h (exported)
IntX.h IntX.cc
IntXImpl.h IntXImpl.cc

plus any additional implementation/header file pairs for classes within the hidden
implementation package. X.h is the only file accessible to users of component X and defines
the interface to X. The directory structure to hold these various files can vary from project to
project and, whilst vitally important for successful configuration management, is not
discussed in any further detail in this paper.

5.1.3. Release View

The release view is what we give to users of the component. All they need is the binary code
for the component, as object files or as a shared library, and the header file giving the
component’s interface:

X
IntX

X.a X.h

Figure 13 - Release view of component X

Here we are distributing component X as a Unix object library (.a stands for archive), plus the
header file needed to use it.

For the settlement system the full inventory of files for the physical view of the instrument
component is too long to include, but it follows roughly the scheme laid out above, with the
header files (*.h) and the implementation files (*.cc) being held in different directories. The
release view is also similar except that the components are distributed as Unix shared libraries
in .so format instead.

Components in Financial Systems Page 25 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

6. Summary

This paper has described the use of component-based development methods on a large
financial settlement system. The functionality of certain key components within the domain
has been described and it was shown how these components, along with their supporting
technical infrastructure, form a layered structure. This lead to a discussion of general
architectural principles such as layering and granularity, and issues concerned with reuse and
extension of components. We also have given a brief overview of designing component-
based systems and how this affects team working.

Finally, implementation issues such as façade objects and the three views of a component
(logical, physical and release views) were discussed.

The general feeling of the development team was that the use of a component-based approach
was beneficial to the project. The areas where it particularly helped are in allocating the work
into teams, as each component was self-contained and relied only on the interfaces of other
components, and in the control of the propagation of change – most changes were contained
within a single component.

The control of interface change through the use of change requests definitely helped in
maintaining the architecture of the system. Team members commented that with previous
comparable systems developed using a structured procedural approach the system architecture
tended to degrade during development, primarily because of the ease of taking shortcuts.
With a component-based system, encapsulation is policed by the compiler rather than relying
on programmer discipline so it is very difficult to use a back door into a component – going
via the public interface is really the only viable option. Therefore to achieve these benefits
the project must have a strong emphasis on architecture.

One point worthy of note is that the system achieved its performance targets without breaking
the problem domain model. Profiling of the system showed that the object aspects of the
design (the use of virtual functions, two and three layer interfaces, design patterns, etc) took
up a noticeable amount of CPU time compared to a procedural system, but not sufficient to
compromised the system’s performance.

The project team also felt that one of the most important achievements was to get the
component interfaces correct at an early stage and then to control rigorously changes to them.
This prevents the system architecture degrading over time and reduces the need to rework
existing code because of interface changes.

Components in Financial Systems Page 26 of 26

Components submission to CBSE (at ICSE) 2000(Rev: 2) - 19/01/00

7. References

[Meyers] Scott Meyers, Effective C++, 1992
[GoF] Erich Gamma, Helm, Johnson, Vlissides, Design Patterns, 1995
[RIS] Mark Collins-Cope, “The RIS Approach to Use Cases” (available from Ratio)
[Jacobsen] Jacobsen, Object-Oriented Software Engineering

“Object and Component Overview,” (available from Ratio)
“Patterns in Financial Systems,” (available from Ratio)
“Persistence: Implementing Objects over a Relational Database” (available from Ratio)

