
Copyright © 2009, Hubert Matthews

Modelling
Archetypes

ACCU Conference 2009
Hubert Matthews

hubert@oxyware.com

Copyright © 2009, Hubert Matthews

Overview
• Archetypes – modelling patterns

• Static data modelling

• Linking to dynamic behaviour of system

• Rules and constraints

• Various bits of history

• Extensions to SOA, ESB and other stuff

Copyright © 2009, Hubert Matthews

Four basic archetypes
• Entities – “people, place, thing”

• Transactional objects – order, loan, payment

• Descriptions/specifications – title, type objects

• Roles – borrower, authoriser

Copyright © 2009, Hubert Matthews

Entity classes
• The nouns in the standard “find the nouns”

approach to OO – modelled in “green”
• Fairly static, eminently cacheable

- No notion of time (history or future)
- Have identities (name, ID, etc)

• Create, read, update, delete operations
- Data only; no significant business processes
- “Dull” use cases – get/set, edit/manage

• Often where people stop modelling (get stuck)
• Examples: customer, product, warehouse

Copyright © 2009, Hubert Matthews

Transactional classes
• Where the interesting stuff is!
• Related to time (look for timestamps) or states

(look for status/modes)
- Can deal with history and future, timespans

• High-volume, dynamic
• Link entities together – modelled in “pink”
• Basis of business processes
• Examples: loan, order, reservation, payment

- Business forms are pinks that refer to green
entities

Copyright © 2009, Hubert Matthews

Modelling in colour
• Patterns of connections between archetypes

• Use colour to denote archetypes and
connection patterns to guide model building

multiplicity on
“hot” end

no direct
entity-entity link

time and metadata
in linking class

Copyright © 2009, Hubert Matthews

Description/specification objects
• Entities sometimes have associated

information about their types

• Use a description or specification object -
modelled in “blue” (as in “blueprint”)

- Examples: title (book), make/model (car)
- Catalogues are collections of blues
- Type Object pattern

• Can be used to implement business and
configuration rules in data

- Fowler's Knowledge/Operational Split pattern

Copyright © 2009, Hubert Matthews

Rules in data (knowledge)
• Only certain types of

connector/cable
pairings are valid

• Use type objects to
encode rules

• Connection has 1:* to
allow for time element

• Could use direct
green-green link if
history/future not
requiredallowed

configurations
(knowledge)

associated
business
process

Fowler’s
knowledge-
operational

split

Copyright © 2009, Hubert Matthews

Modelling guidelines
• Connect entities via a transaction (“pink”)

- Represents a step in a business process
- Has time element, rules and constraints
- Allows for history and future

• Connections between similar archetypes are
whole-part relations (UML composition)

- Multiplicity is 1 for whole, * for part
- Dependent objects

• “*” multiplicity on “hot” end (pink->green->blue)
- Great check on cardinality in database schemas

Copyright © 2009, Hubert Matthews

Simple order example

Copyright © 2009, Hubert Matthews

Common issues
• Not using transactions (“pinks”) for linking

- Entity-to-entity links have no notion of time
- Current state only; no history or future
- No place for metadata – who did what when

• Confusing entities and description objects
- Title v. Book

Copyright © 2009, Hubert Matthews

Theatre example

“buy” side “sell” side

Nesting of pinks for
different time spans

Copyright © 2009, Hubert Matthews

Roles
• Mostly

associated
with cross-
component
links

• Represent
roles in a
transaction

• Come
between
transaction
and entities

who what

where

when

Copyright © 2009, Hubert Matthews

Roles (2)
• An example of Proxy pattern (1:1 multiplicity across

component boundary)
• Act as views on a database

- Only details relevant to importing package
- May also contain package-specific state

• More advanced modelling tool - not always required
• Related to Role Decoupling (a.k.a. Interface

Segregation) pattern
- E.g. Person may have roles of Doctor, Patient, Parent
- One green, three roles

• Programming interfaces for mocks during testing

Copyright © 2009, Hubert Matthews

History lesson (Part 1)
• “Modelling in colour” - Peter Coad (Together, now

Borland)
- Only static data model – no process
- Domain-neutral component unsuccessful attempt to

include some process
- Colours match available Post-It notes!

• Object/relational mapping tools
- Rails/Grails/A.N.Other ORM mappers
- Static data only – no process

• Domain-driven design (Evans) – no process

• Jackson System Development has trees for
processes but no link to types/classes

Copyright © 2009, Hubert Matthews

Dynamic process modelling
• Systems are built to do things, not store data

• More important than data model but not as
well understood or used as often

• Key is that process model and data model
must link up

- Deep synergies between the two
- Not often appreciated
- Based around transactional objects (“pinks”)

Copyright © 2009, Hubert Matthews

Statecharts v. activity diagrams
• Two approaches in UML – statecharts and activity

diagrams
• Statecharts are superior for modelling processes

(IMHO!)
• Activity diagram issues

- Unhelpful semantics in UML (Petri net – requires
branching)

- Confusion over wait-on-arrows and wait-in-box
- Encourage too much detail and drilldown

• Statecharts tend to have limited number of states
that are relevant to business users

• How do you know when you have got all of the use
cases/services? How can you check?

Copyright © 2009, Hubert Matthews

Library process
use case
or service

state
superstate

whole lifecycle
in one process

Copyright © 2009, Hubert Matthews

• Service/use cases have associated objects
- Reporting, statements, audit, data mining, etc

• Some just create new “pink” objects
• Some also change existing “green” entities

- e.g. update stock level

Links to data model

buy

renew

return
with fine

Copyright © 2009, Hubert Matthews

Major phases in processes
• Creation/setup, during operation, cleanup

- Pensions: new business, servicing, drawdown
- E-commerce: quotation to order, fulfilment, invoice to

payment
- Airport: before arrival, aircraft on stand, after departure

• Business transactions and contracts between
phases

- Often separate departments in a business
- Handoff, passing of dossier/files (i.e. data flow)

• Business forms are pinks that request green
information

- “Office use only” sections are process-level pinks

Copyright © 2009, Hubert Matthews

Major phase examples
• Quotation->order, pick/pack/ship, invoice->pay

• Departmental boundaries, separate systems

• Real-world contracts at handoffs

• Source of much integration work! (“Customer” everywhere but
may be different -> roles!)

sales

warehouse

accounts

Copyright © 2009, Hubert Matthews

• Each phase has a new top-level pink
- Quotation, order, invoice

• Relationship across time is 1:0..1 or 1:0..*

• Lots of conditional links because things may
not have happened yet

Major phases and data model

sales warehouse

accounts

Copyright © 2009, Hubert Matthews

Events and “pinks”
• State machine is effectively a parser for

incoming events (services/use cases)
- Enforces ordering of business process events
- A regular expression parser

• Jackson System Development (JSD)
- Has entity lifecycles that describe this grammar
- No direct links to data model, however
- (Previous set of linked pinks is an OO JSD tree)

Copyright © 2009, Hubert Matthews

Layered systems
• Classic three-tier architecture

- Presentation, “business logic”, data/persistence

• Everything up to now is in the data layer

• Middle layer not well understood
- What does it do to what?

• Controllers (pieces of code) publish services
that manipulate pinks (and greens)

- Enforce process statecharts and business rules

Copyright © 2009, Hubert Matthews

Business rules
• Most rules are about whether a pink

transaction object can be created or modified
- Can person X borrow book Y?

• Some are read-only (access control)
- Can person A look at bank account B?

• Implemented in controllers in middle layer
• Conceptually, controllers have a list of all

possible new pinks, i.e. all allowed actions
- May also be implemented by role objects

• Rules are important and often overlooked

Copyright © 2009, Hubert Matthews

Service-oriented architecture
• SOA exposes

middle layer

• Requires layering
of services to
enforce rules

• c.f. Spring’s
external “wiring” of
components

• Too often people
think SOA is flat
and forget rules

Example of Spring dependency
graph showing inter-component
(i.e. service) connections

service 1 calls

service 2 calls

etc…

Copyright © 2009, Hubert Matthews

SOA (2)
• Archetypes help distinguish process-specific

services for pinks from CRUD services for greens
• Example: Create a purchase order

- Simple base service just creates a pink
- Huge number of rules: budgets, preferred suppliers,

approved items, payment terms, etc
- Layered services enforce rules and manipulate

pinks/greens in data layer

• Web services deal with processes and rules (verbs)
• RESTful services deal with data and often omit rules

- CRUD access to nouns (mostly “greens”)

Copyright © 2009, Hubert Matthews

ESB
• Content-based routing

- “Pink” flows through system
- Process statechart implemented in parts by

individual systems (major phases)
- Federated collaborative approach

• Orchestration
- Centralised management of process statechart
- “Big box in middle” approach

• Data duplication – keeping “greens” up to date
• Similar to data-flow diagrams

Copyright © 2009, Hubert Matthews

BMUF (big modelling up front)?
• Lightweight models – not even attributes/fields

• Used for thinking, describing, analysing and
structuring systems

- Not used for code generation

• Agile
- (not Scott Ambler’s “agile modelling”)

Copyright © 2009, Hubert Matthews

History lesson (Part 2)
• Approaches that fit this style

- Yourdon and Schlaer-Mellor – both have objects and states
but don’t link the two (and no pretty colours!)

- Jackson System Development – very close, no direct link

• Colours help a lot
- Names for archetypes are useful, pattern names
- Modelling rules give quick check on multiplicities, etc
- Inspired by Coad’s Modelling in Colour

• Catalysis 1 had most of this but without colours and
wasn’t particularly approachable

• Approach shown here is much easier and based on
Catalysis 2 (shameless plug….)

Copyright © 2009, Hubert Matthews

Summary
• Joined-up modelling is both possible and necessary

- Better requirements capture, easier implementation

• Agile models lead to better architectures
- Separation of different archetypes/colours

• Transactional objects (“pinks”) are the key

• Most people focus unduly on data model but not on
pinks

- Insufficient attention paid to process and rules

• Lightweight models aid thinking and structure
- Heavyweight models and code generation don’t!

